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S IG N IF ICANC E AN D EXPLANAT ION

Spherical harmonics are used to solve many physical problems, especially

in potential theory . A general izat ion of zonal spherical harmonics was

introduced by L. J. Rogers in 1895. He obtained many properties of these

polynomials , including some that would not be found for the classical spherical

harmonics for another twenty-five years. However he was unaware that his

polynomials were orthogonal. The orthogonality relation is proved and

used to obtain further results for these polynomials. Another limiting case

gives a relatively recent result of Hylleraas that arose in his study of the

Yukawa potential.
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A GENERALIZATION OF ULTRASPHERICAL POLYNOMIALS

Richard Askey and Mourad E. -H. Ismail

To the memory of Paul Turan , with respect and affection.

1. Introduction. Fejer 1211 introduced the following class of polynomials. Let

(1.1) f(z) = ~ a z~
n 0

be a function analytic in a neighborhood of the origin with a real. Form

(1.2) If(re~~)I
2 

~ P (cos O)rn

n~O

so that

(1.3) P (cos 8) = a a cos(n - 2k)8
k=O k n-k

P (x) is a polynomial of degree n, and is called a generalized Legendre polynomial
• -1/2since f(z) = (1 — z) gives the Legendre polynomials. More generally .

f(z) = (1 — z) A gives the ultraspherical polynomials C~ (x). The orthogonality rela-

tion for the ultraspherical polynomials when A > —~~~ is

( 1.4) f cA (x)cA (x) (l - x2)~~~~
2dx = 0, m

(2A) r(L)r(x 4
= 

n!(n + X )~~( X )  • m =

Fej~r and Szeg~ obtained a number of interesting facts about these generalized Legendre

polynomials, some of which are summarized in [40 , Chapter VII. Feidheim (231 and

Lancevickil [32) determined when the generalized Legendre polynomials are orthogonal

by showing tha t the polynomials must satisfy a specific recurrence relation. However

they did not obtain an explicit representation for the polynomials and they were

unable to f ind  the weight function. We will find both the polynomials and the weight
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function. These polynomials are not new. They were studied extensively by Rogers in

the third of an important series of papers [361 . The only results from this series

of papers that are well known are two identities that Ramanujan rediscovered and are

now known as the Rogers—Ramanujan identities. However there are many other interesting

identities (some are reproved in [61), and the polynomials in the third paper are

probably more interesting and important than any other results in Rogers papers,

including the Rogers—Ramanujan identities. We will summarize some of the results Rogers

obtained for these polynomials and add a few new ones.

The key to obtaining explicit formulas is to use the q-binomial theorem and basic

hypergeometric series. The binomial theorem can be written as

(a)—a n n(1.5) (1 — x) = x
nin 0

where

(1.6) (a) = r(n + a)/F(a) = a(a + 1) (a + n — 1)

The q-binomial theorem (5. Th. 2.11 is

= (a;q) (ax:q)
(1.7) n x~ = -

~~~~~~ 

= 
, < 1, qI ~ 1(q;q) (x:q)n 0  n =

where

(1.8)  (a;q) = (1 — aq~), J q J < 1
n=O

and

(a ;q)~ n-l(1.9) (a;q) = = (1 — a) (1 — aq) ~~~~ (1 — aq
(aq ;q),,

More general hypergeometric and basic hypergeometric series are given by

a a (a) ... (a) n
1 r r l n  r n  x(1.10) 

r
Fs b ,...,b 

X L (b ) ... (b ) n!
1 s n=0 l n  S n

and

a
1 

a 41 ~ ~ (a 1
;q) (a~41;~~) ~n - (

(1.11) r+l~r bi~~~ •~
br 

q,xj = 

n=O (b 1
;q) ... (b~;~~) (q~q)
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To motivate the study of the polynomials impl icitly found by Feldheun and

Lancevickii we remark that their generating function will turn out to be

—i~- (8re ;q)~~(~ r~ ;q)
• . (1.12) • • = P (cos 8)r— i8

• (are ;q)~~(are ;q) n 0

which is a very natural analogue of the classical generating function

(1.13) (1 — 2r cos 8 + r2) A =~~ C~ (cos 8)r~

For 1 — 2r cos 8 + r2 = (1 — re
le ) (1  — re lO ), and the analogy between the binomial

theorem as given ~n (1.5) and the q-binomial theorem in (1.7) shows that the function

(Sre’8;q) /(are’~ ;q) is a natural substitute for (1 — re1O)~~~.

i
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2. The orthogonal generalized Legendre po~ynomiais. If a set of polynomials is

orthogonal and satisfies P (-x) = (-l)~ P (x), then it must satisfy the three term

recurrence relation

(2.1) 2b xP (x) = P (x) + A P (x), n 0,~I ,..., P (x) = 1, P (x) = 0
n f l  n4l n n—l 0 —1

Feldheim (231 ~ete~mined b and A
n 

for the generalized Legendre polynomials that

are orthogonal. His result is

bn 
= b1 

+ (b
1 

— b0) ~~ : ~~~~~ 
n = 0,1 

A = b ~~+2b (b - b )  sinh(n jj_~ (b ~~~~~~~~~~~~~~~~~~~~n 1 1 1 0 sinh (n + 1)~ 1 0 sinh (n + l)~

The coefficients in the original power series for 1(z) satisfy

(2.2) b = a / an n n—i

Setting q = exp(-2~,), we rewrite these as

n-i
(2.3) b = b + (b - b )q

n 1 1 0 
(1 — qfl+l)

(2.4) A = b~ + 2b
1
(b
1 

- b
0
)q (1 + (b

1 
- b

0
)2q2 

(1

With these choices of b and A , formula (2.1) can be written as
ft n

2x(b1
(l + q) — b

0
q - (b

1q + b1 
- b0)q

n)P (x)

= (1 — q~~~
1 ) P 41

(x) + [(b
1 

+ b
1q 

— b
0q)

2 
— q~~~(b 1 + b1q 

— b
0)
21P 1 (x)

Set b
1 

+ b1
q — b

0
q = .~ and b

1
q + b

1 
— b

0 
= B. This gives

(2.5) 2x)cz - Bq’~)P (x) = (1 - q~~~
1 ) P ( X )  + [a2 - ~

2qn~
l Ip (x)

To find the polynomials P
n
(X)

~ 
multiply ~2.5) by ~~~ and s~~, recalling that

P 1
(x) = 0, and P0(x) 1. If

V flf(r,x) = L P ( x ) r  ,

n=0

the resulting equation is

______________________ 
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An unlikely looking formula follows on equating the basic hypergeometric series

in (3.2) and (3.10). It can be written as

—n 2 n 4 (~~~~n 0 4  —1
q ,a  x(a ;q) q , q a , ax , ax

(3.17) 
2~
’1 1—n —2 ’ q, 2 

= 
n 2 4~3I 2 1/2 2 1/2 2’ 

q,q
q a a a (a ;q) Ia q , -a q , —a

When a = q
(~/2 and the limit q -

~ 1 is taken the resulting identity is

n
—ft . a x (2ci ) -n ,  ft + 2a 2

(3.18) 2
F
1 

x 21 = 
n F — 

(1 — x)

1 - n - a  J

This is one of the iterated quadratic transformations. The first quadratic type

transformation for basic hypergeometric series seems to be that of Carlitz (171 .

Another is given in (7 1 , where the discrete q-ultraspherical polynomials are related

to some discrete q—Jacobi polynomials. Another will be given in [121 .

An interesting inequality follows from (3.1),

(3.19) C (x;5q) < C ( 1 ;5 q ) , — l < B < 1, —l < q < 1

For cos(n — 2k)O < 1 and (B;~~)~ > 0, (~ ;~~)~ > 0 when —l < B < 1, —l < q < 1.

Unlike the classical case of C~ (x ) ,  when

( 2 A )
(3.20) =

ft n!

it is impossible to find the value C (1;Sq) as a simple product. There are two

interesting points where the value can be given as a product. From (2.10)

• 2 2  2 2 2(—B r ;q L ~~ ;q n 2n

n=O 
c (0;5q)r ’~ — 

( i ) ( i ) 
— 

2 2  
— 

~~ 

C 1) r

so

2 2(B ;q
(3.21) C2

(0;Bq) = (1)n 2 2(q ;q )~

C
2~~1

(O;Bq) = 0

a, b
Heine [281, see also (5, Cor . 2.4] found an analogue of Gauss sum of 2

F
1 

c

It is
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a,b ~~ {~~;q)(3.22) 
2~ l 

= 
= .2.~ < , q < I

c 
(ab ’ q) (c,q)

• • • • • • CIf the series terminates th i s  is the correct va lue  wi thout  the c o n d i t i o n  —
~~ 

< 1.

Set e2~
0 

= B in (3.2) . This gives

1/2 -1/2 (5 2 ;q )
( 3 . 2 3 )  C ~ S q  = . ~— n/2 

0 ~ ~ q 1”2

When I ~ ~ < q~~~
2 

this is interesting , for then

1/2 -1/2

• ~ Cn ~~~~~~ 

= 0

This goes to zero fast enough so the distribution function has a point mass at
1/2  — 1  .

~ —1 /2x = (5 + ~ ). ‘2 when 1 < B - q , see [33). By symmetry there is also one at

x _ (~ h / 2  
+ ~~

l 2 ),2. These are the only p o i n t  masses when 1 < B q~~~
2.

For convenience the first four of these polynomials are given next.

C0(x;B q) 1

• 
C1(x ; B q) = 

2 ( 1  
: ~

(3.24) C2(x;5q) 
= 

4 ( 1  — 8) (1 — ~2 — 
(1 —

(l — q ) ( l — q )  ( l — q )

(1- q) (1- q2) (1- q3) (1 - q2) (1 - q

From this point on the formulas become more complicated .

Another  useful expression for C (cos O;B Jq) can be obtained by applying the

q-analogue of the Ptaff-Kummer transformation to (3.2) . This transformation is
0)

a, b (ax;q)~ (~
.; 
q) (a;~ )~~

(_x b)0q 
2

• ( 3 . 2 5 )  
2~l ~ 

q,x = (x;q) (c;q) (q;q) (ax;q)

See Andrews (41 for a proof of this formula. The resulting formula is

I .
-11-



(3.26) C (cos 0;Bq) — 

~::~: 
e

0
(B 1e 2’8

q~~’~;q) 
.

—n 1—n —2 ~~ —2i 0 k

~q ;~~)~~(~ ~ (-qe )
L 1—n — l 1—n —l —2i8

k 0  (q B ;~ )~~(~ B e

Now sum this series in the opposite direction, i.e. replace k by ri — k, and s impl i fy

to obtain

2 —inS —n 2i9( B ;q) e q , B, Be
(3.27) C (cos O; Bq) — 

n 

~ 3~ 2 2 q, q
(q;q)~~B B , 0

From this it is easy to obtain the generating function

(3.28) ~ 
C (cos 0;51

~~ q~~ ($r)~ = (—re ’8;q) 2~1 

Be2’0 

q, —re~~
8

n 0  (B ;q) 
8
2

-12-
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4. The orthogonality relation. The orthogonality relation for the q-Wilson polynomials

defined in (3.3) is

(4 1 
~~(X)P (x> Cl - 2(2x2 - 1)q k 

+ 02k) 
dx• 

-l h(x,a)h(x,b)h(x ,c)h(x,d) 
-

0 m � n

2wa~~bc;q) (bd;q) (cd;q) (q;q) (l — abcdq n l
)

= (ab;q) (ac;q) (ad;q) (abcd;q) (1 — abcdq
2
~~

1
) m = n

(abcd;q)

(ab ;q) (ac ;q) (ad ;q) (bc ;q ) ( b ci ;q) (cd ;q) (q ; q)

when a , b jcI,Id I < 1, where

(4.2) h(x,a) = (1 — 2axq~ + a2q2~)
n=0

In general there will be finitely many mass points outside (-1,1). See [121 for details.

For the continuous q—ultraspherical polynomials when SI < 1, the specializa-

tions of the last section lead to

1 
2 -1 •2 (1- 5) (B2;q) (B;q) (Bq;q)

(4.3) f C~ (x;BIq)C~ (x;Bq)w 8
(x)(l_x ) / dx = 21i 

n (q;q) 2 6rn,n—1 (1 — Bq ) n (B ;q)0,(q;q)

where

(4.4) w
5
(x) FT (1 — 2(2 x 2 

— 1)~~k 
+

• k 0  (1 — 2(2x — l)q B + q B

This can also be written as

2i0 —2i8(e ;q)~~(e ;q)
• 

(4.5) w
8
(cos 0) = 

2 8 —2i9(Be ;q)~,(8e ;q)

To get a better idea of this weight function observe that

w 2 (x) (l — x2 ) u/2 
— (4 — 4x 2 ) ( ( 1  + q)2 — 4qx 2 ) ( 1  - x2 ) 112

When q — 1 thi s becomes 42 (1 — x) 2 ) 2 1”2 .

— 13—
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Before considering other special cases we will give a direct proof of the

orthogonality relation (4.3). There are two reasons for this. One is tha t no other

proof has appeared yet, and the three other proofs that we know use results that are

not needed in the present proof. Also this proof will give a direct proof of an

important identity of Rogers (36).

As a first step we compute a trigonometric moment that is of independent interest,

w • IT = 2iS n — 2 i O n
f e2~~~w5~

cos O)dO = f e~~
k0 FT (1 — 

2i0 
g )  (1 — e q .  dO

0 0 n=’O (1 — e Bq ) ( 1  - e 5q

Use the q—binomial theorem,

2iO —l(e ;q) ( B ;q) n 2inO
• L — B e

(5e2’0;q) n=O

to get

j

IT 

e2~~
5
w
5
cos S)dO = 

n~ O m=0 

~~~~~~~m 8
m f

IT 

e
2i
~~~~~

_m)O
dO

—l —1

— 
~~ ~~~ ~~~~~ ~

l
~~+n k+2n

- ~ 
n=0 ~~~~~~~~~~~~~~~~~~~~~~ 

B

—l —l k— l
k ~ ;~~)~ q ~ 2

= ‘~~ (c1;cl)~~ 2~1 
q
k+l

Heine (281, (29, P. 1061 , see also (5, Cor . 2.21, gave an important transformation of

the general

c
a, b (ax;q) (b;q),, ~~,x

(4.6) 2~1 c 
= 

(x;q),~(c;q),~ 2~1 ax 
q,b

The iterate of this is

a , b (b x;q) ,, (~~; q ) ,,, ~~~~~~ ~(4.7) ?l c 
q,x = 

(x;q)~~(c;q) 2~l bx 
~~~ ‘

Use (4.7) on the 2~l 
above to get

—14—
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2ikO ITBk (B l;q)~~(~ ;q) (5q~~1;q) q~~, ~
—l 

k+lI e ~5
(cos 0)d0 = 

2 k+l 2’~l q,Sq
0 (~ ;q)~~(B ;q) (q ;q) B

Summing this (there are only two nonzero terms) gives

2ikO 58 (8 1;~~)~~(l + qk) (B-q) (Bq;q)
(4.8) f e w (cos O)dO = _________________ ___________

0 B (B q,q)
k (q;q) (B

2
,q)

B < 1. The condition l B  < 1 was used to expand w
9
(cos 9) by the q-binomial

theorem, and the series that was used does not converge when 8
2 

> 1. The case B = 1

is trivial, since w (cos 8) = 1. In this case
1

f ’T 
e2~~

0
w1~

cog 8)d8 : : : ± 1 2 ,.~~ ,

To continue the proof of the orthogonality relation consider

U • 

C (cos 8;BI~~)Tfl 2k(cos 8)w8
(cos O)dS

where

T (cos 0) = cos non

This integral is

n (S;q).(B;q) . iT 

ei _ 2 i) o [~~~n 2 1 ~~8 
+ ~~~ 

(n~2k)G] 
w (cos O)dS

j=O ~~~~~~~~~~ ~ 
2 B

= ~ 
ii (B;q)~~(B,q)~~ 1 f (e2’

~~~~~
’
~~

0 
+ ~~~~~~~~~~ (cos 01dB2 

j..O 
(q;q)~~(q;q)~ _~ 0 B

iT 
(B:q),_ (Bq;q)

(I  + 1 12 2 n—k k( B ;q),,,(q;q),~

where

fl (~ ;q1 (3;q) 
— • 8

k_i
(8

_ l
;q) 

—F ~ k 
~ (1 + k 3 )k j~ O 

(q;q)~~1q;q)~ _~ (B~ ;~~)~ _j  
q

—15—
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f

Use

1—n -i(a;q)~~~ (a;q) (q b ;q).

(b;q)~~~ (b;q) 
(q
1
~~a

1;q)~ ~a

to rewrite this as

—1 —n —k —l 1—k(B ;~ )~~(B ;~~)~~ k k ~‘ (q ;q)
3

(q ~ ;q).(B;q)~~(—q ;q)~
~~~~ ‘k 

= (q;q) (5q;q) B (l + q 

~~~~ (q;q)~~(q
u 7

B
l
;q)~~(q

l k
B;q)~~(_q

)
~;q). 

q

This sum is a balanced (i.e. the product of the numerator parameters times q is

the product of the denominator parameters that are listed in the 
4~3) and so may be

transformed by

• q~~, a, b, c (bc1~ 
q)[~~~ q~~, a, ~~~~, ~~

(4.10) 
~~~~~ d, e, f 

q,q — 
ld i  (e;q) (f;q) 

d. 

~~~~~~~~~~~~

bc bc

where ql l l
abc = def . See (7) or (12) for this transformation. Let d = _q~k, a = B.

This gives

-l k—n k (1—k)n k—n 2(8;q) (B (1 + q )q (q ;q) (B ;q)~(4.11) I = —_______________________________________________
k 1—n —l 1—kB ;g)~~(q B;q)~1

—n —1
q - B. g , —B

4~3 —k k—n 2 q,q
—q , q  , B

n-2k -l 2 1—k
k (1 — q ) ( B ;~ )~~(B ;~~)~~(~ ;q)~~~1

- = (3q) 
1—k 2—k(1 — q ~~~~~~~~~~~~~~~~~~ B;q)~ _1

Thus 1k 
= 0, k = 1,2,....n — 1, and 1

0 
— 1n 18 2 ;q1~ / (8 q ; q1~~. Since

T~ (x) = 21~~
l
~
n 

+ ~~~~~~ n — 1,2,..., T
0
(x) — 1 •

and 

C~~ x ; 8 t q )  = 2~ + ..., ~ . 0.1,... ~

• it is easy to check that (4.3) holds.

—16—
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The argument above is easy when 18 1  < 1, it would be more complicated for the

values of B with 18 1  > 1 when the polynomials are orthogonal with respect to a

positive measure. Rather than try to carry out this argument (we have not tried)or

• . introduce the methods that we know will lead to this orthogonality we will now use

the orthogonality to find some important identities. The complete orthogonality rela-

tions will be given in (111 arId (121. Different methods are used in these two papers.

The argument above did not need k = 0,1,.. ..n. Let k be successively —k

and n + k in (4.11). A calculation gives

(4.12) 
71 

C (cos 0;8Iq)T~~2~
(cos 8)w

8
(cos 0)dO

iTS
k
(B l.q) (q.q) 

(1 - qfl+2k) (B;q)~~(8q~~~~~;q)

(1 — qfl+k) (q;q),~(B
2
q~;q),~ 

, k — 1,2 

Using the orthogonality relation (4.3) and (4.12) gives

2 k ~~~~~~ —k ~
1 — q~)(l — 8q f l 2 k )

(4 .13 )  T ( x) ~ B n-k c~_2~(x;8lq)
k=0 ~~~~~~~~~~~~~~~ — q ) 2 t 1 .  — B)

Then if (4.13) is used on the right hand side of (3.11), the result is

L2J (Y ;~~)~~(Y ;)~~ ..~~
(
~~;9) —(4.14) C (x;y~q) = n n 2k (1 —

k—0

qfl~2k q
n/2_k+l

, q
fl/2_k+1

, yq
fl_k, ~

_1 ~-k 
q. ~ 

Cfl_2~(x~BIq )
6 ~ n/2-k n/2—k -1 1-k n+l—2k n+l-k ‘y U - 8)

• q , -q ,y q ,Bq

The 6~5 
is very well poised and so can be summed by a theorem of Jackson (37, p. 961 .

The resulting series is

• 
k ~~~~~~~~~~~~ —k (1 — ~~n_2k )(4.15 )  C (x;BIq) = 

k—0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (1 — 8)

This very important formula was found by Rogers (36) . He obtained it by finding

the coeff icients for small values of n, guessing the answer , and then proving it by

—17—
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induction. The special case when ‘
~ = 0 and B = 1 was used in his second paper (351

to obtain the identities

~ n
(4.16) g 

= 
1

(q;q) 5 4 5n 0  n (q;q )(q ;q

and

fl
2+n

(4 17) V ~ = 
1

‘
~ (q;q) 2 5 3 5n O  n (q ;q )(q ;q I

While it is not particularly easy to read and understand these papers of Rogers.

we have found it easier to read them after understanding the polynomials of Rogers .

It is also easier to read them in the order (361, (351 , [34) rather than the order

in which they were written. These papers are very interesting and contain many other

impor tant results. Probably the most interesting is

min(m, n)
(4.18) C (x;B~q)C (x;5~q) = 

k=O 
a(k.m.n)C~~~~2~ (x;BI q)

2 m+n—2k
~~~~~~~~~~~~~~~~~~~~~~~~~~ ;~~)~ ÷~~~ (l — Bq )

a(k,m ,n) = 
2(8 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 81

Rogers found this result in the same way he found (4.15) , by working out the coefficients

for small m, guessing the answer , and proving it  by induction.  We do not have a

better proof of (4.18) at this time.

Rog er s [36) pointed out that the special case q = 1, 8 = qA is an important

result for spherical harmonics. However no one picked up this result from (36) and

the special case B = q
1
, q = 1 of (4.18) was next stated by Dougall (191 almost

twenty—five years later. The only special cases that were known before Rogers found

the general result were the trivial cases B = 1, which is equivalent to

1cos nO cos mO = Icos(n + m)8 + cos(n — m )OJ

8 = q , which is

— 18—
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Ii 
_  

_sj n (fl  + 1)0 sin(rn + 1)0 min (m,n) 
sin(rn + it + 1 — 2k )8

sin 8 sin a k=0 0

1/2and one nontr ivial case, B — q - q — 1,

1i~ 1i~ (i~k • 
min(In,n) a + + ~

- - 2k ~J (~J ~
j ~~ + n - kJ  I

W r 2 k rn—k n—kP ( ~~) P (x) = 
1 “1’~ + —2k w( k0 m + n + — - k  kI(m - k)I (n - k)I I—l 

a n
2 

~
2
~a+n—k

a result of Ferrers (24, Example 10, p. 1561 and Mama ( 1 ].  See Chapter 5 of (9 1 for

a summary of some of the known results on the linearization pr oblem.

For mulas (4 . 15)  and (4 . 18) can be inverted . The inverse of (4 .18)  is

(B ;g) (8 ;q)  (8 ; q)  min(m ,n)
(4. 19)  

rn~~~~~~n 
C~~~~(x ; B 1 q) (q;~~)

:~~ k—0 
b ( k. a.n) C~..~~( x ; 3 I q ) Cfl_~~( x ; B i q )

-a—n —2 2k- rn —n —2 -l k(q 8 ;q)~~(1 — q 8 ) (8 ;q) ~2
b( k, a. n) -a-n -2 1-rn -n -1 q= g B ) ( q  B

The limiting case 8 = q , q — 1 of (4.19) was found by Al-Sala mi (3). A proof

of (4.19) can be given following his proof; use (4.18) to repl ace C~~~~( x ; B l ~~)C fl_~~( x ; B j q )

and invert the order of summation. The resulti ng series is a very well poised 6~5 ’
which is summed by J ackson ’s result. Detai ls are left to the reader .

The other inverse is

(4. 20) w 8
( x) C (x ;8~q) 

k—0 
a ( k . n ) C ~~ 2~~(x; ’r I q ) w (x)

— yq fl +2k )
a ( k ,n )  — 

+k 2(q ;q) (’rqm ;q) ,, (B qfl;q) (y ;q)

Thi. follows fr om (4.15) by the general argu ment given by Askey in (8) . The series

(4.20) converge . when 181 ‘ 1~ I~I < 1. For Ia(k.n)I = 0(8 k ) and

ICfl~2~(Xs~Iq) I ~ (~~ + 1) maX 
( q ~~ 

— A(y ,q )  (a + 1)

for v. q fizad , I~ l < 1.

~~gers (36) found a number of other formulas . The read er is referred to (36) for

the.. resul ts.
—19—
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5. Special cases. It is not surprising that interesting results are found when q -
~ 1.

However it is surprising that an interesting result could be found by letting q ÷ 0.

To see this consider the generating function (2.10) when q = 0. It is

2 2  iO —iO
(5.1) 1 — 28r cos 0 + B r 

= 
(1 - Bre ) (1 — Bre 

= ~ ~~~~~ 8;5,0)r”

l — 2 r c o s 0 + r  (1 — re 1(1 — re I n—0

A partial fraction decomposition gives

(5.2) C (cos 03810) = 28(1 — 5)cos nO + (1 — 5) 2 Sin(n + l)9  
• n = 1,2 

C0
(cos 0 ; 5 l 0 )  = 1

or

C (x;$I0) = 2 8( 1 — B)T (X) + (1 — B) 2U ( )  n = 1.2 

- c0
(x;SjO) 1

These can also be written as

C~ (cos o ; BIo )  = (1 — 5) 
sin(n + l)O - 8(1 - B) sin O 

, n = 1,2,...

C0(cos 0;B~
0) = 1

or

C (x; 8~O) = (1 — 8) 1) (x) — 8(1 — 8)1) (x) , n = 1,2,3,...n n n— 2

C0
(x;8I0) = 1

The orthogonality relation is

1 2 1 / 2
( 5 . 3 )  1 C (x ; B ~0)C (x;BIO) (1 — 

2 dx = (1 — 8) 2 6 , (m,n) ~ (0, 0)
— 1 m 

(1 + 8) — 48x 2 m, n

1 2 1/ 2f [C
0 (x ; 8I 0 ) ) 2 (1 — x 

2 dx =

—l (1 + $) 2 
— 4Bx 2 (  I

when I s I  < 1.

This is a known result. It follows easily from the Szego-Bernstein theory (14) .

(40, ~2.6] ; it was also given by Kar lin and McGregor ( 3 1 ) .  When 5 > 1 there are

two point masses that ne ed to be added outside (-1, 1) .  See Ka r lin and McGregor (3 1 1 .

-20-
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Some of these functions are spherical functions on rank one spaces over reductive

p—adic groups. See Cartier (18] .

The case q -
~ 1 gives the classical ultraspherical polynomials. The main point

of interest here is the way the weight functions converge as q + 1. Recall that

1 = 2 n 2n (B;q) (Bq;q)(1 - 2(2x - 1)q + q  ) dx —(5.4 )  J 2 it 2 2n I 2 = 2w 2-1 n 0  (1 — 2(2x — l)Bq + B q ) 11 — x (q ;q ) 0, (B ;q)

Let B = qA and x = e~
0 . Then (5 .4 )  becomes

• A A+12i8 n — 2 i8 n (q ;q) (q ;q)
(5.5) 1 FT 2iO n+A FT (1 

—2i0 dO = 2w 2A0 n=0 (1 - e q ) n 0  (1 — e q ) (q ;q) (q;q)

The q—g amma function rq(x is defined by

(q ;q)~ l—x(5 .6) r (x)  = (1— q) • 0<  q < 1q (q ;q)

In (10] it was shown that limi r (xl — r(x). The limit on the right hand side of
q 1  q

(5.5) can be written as

2wr
q.
(2A) 

2sr (2A)
I’ ( A ) I ’  (A + 1) ~r (A)r(A + 1) as q 1
q q

The left hand side of (5.5) is

—A A 210 —A A —2i0
. 1~~~q_ ; q.q e 1~0 q_ ;q ,q e )dO
0

and formally this converges to

f (1 - e2i0)
A
(l - e 2lO)Ado = (2 - 2 cos O)AdO — 2

2A 
~ 

(sin O)2Ade

The formal argument can be justified since

• (ax;q)
• 

~~~~~~~~~ 
q, x) — 

(x ;q) ,~

and

1
P’
0
(
~~ 

x) — (1 - x)
5

are functions which are analytic for lx i < 1 and have extensions to the complex plane

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



cut along (-~ ,-l) and

lint ~P0
(q, q, x )  = 

1
F
0
(a; x)

Another interesting case is q -
~ -1. Consider the case B = ~~~ Set q = —p.

Then

• 2 22i0 2i0 2 210 2(e ;q) (e ;q ) (qe ;q
W (cos 0) = =A A 2x0 A 2i0 2 A 2iO 2— I q i ,q ( - I q i  a ;q) (-~q I e ;q ) (—q~q~ e ;q

2i0 2 2i0 2 2
(e ;p ) (—pe ;p )

=— 
A -i-l 2i0 2 A 2i0 2

(p e ;p ) (—p e ;p

— (A+l) 2 A+l 2i0 —(A — i) 2 A 2i0 2
= 1~0 (r _ ; p , p e I 

1~~0
(-p ; p • -p e II

As p -* i this converges to

F
0[ : 1)/2

; e2i8 ) F [ ( 1 _  
A ) / 2  

_e 2
~ 8} 

2 
= (1— e

210
) 
(A+l)/2 (1 + e2~

0) 
( A _ l ) / 2 ~

2

( 2 —  2 cos 20) (A ÷ l ) / 2 (2 + 2 cos 20) ( A — l ) / 2

A+l 2 ( A + l ) / 2  A — l  2 ( A — l ) / 2
= 2 (sin 0) 2 (cos 0)

= 22A (1 — x2) 
+
~~~

2
I~ I

A
~~

Set

(5.8) N~
’ (cos 0)  = lim C (cos 0; _~q~

A~ q1
q~ - 1

Then

(5.9)  f WA (x)NA (x) (1 - x 2 ) 2 I I A
~ ld = 0, m n .

A change of variables gives

(5.10) N~~ (x) = a P 2 2 (2x 4 
— 1)

2
(5.11) N~~~1

(x) bXP (2x — 1) •

where the Jacobi polynomial P~~~
’51 (x) is defined by

—22—
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(a + l) —it, n + a + B + 1
(5.12) ~,(a,5) 

~~~~ — 
n) 

n 
2
F
1

They are orthogonal on (—1 , 1) with respect to (1 - X )
m (l + x)8. The constants

a
m and ba in (5.10) and (5.11) can be determined by keeping track of the constants

that occur in the various orthogonality relations, they can be determined from the

recurrence relations or the coefficient of xrI in one of the explicit formulas for

C (x;BIq) can be computed under the specialization 8 — - i q l ’
~ and q -1, and can

be compared with the coefficient of x’~ in (5.12) . The last is the easiest method .

The results are

A (A) (4.4—1)(5.13) N~~ (x) — -

~~~I: 

~~~~ (2x2 — 1)

and

A (A + l)
(5.14) N~~~1

(x) = 2x 
A + 

m 

~m
2 2 

(2x
2 

— 1)

2 m

Now we can see the real reason for the existence of a surprising result of

Nyllereas (30]. The coefficients in the expansion

(5.15) P ’8
~~( x ) P ~~~’8~~(x) = 

~ 
a ( k ,m , n ) P~~ ’~~~(x)

n-rn

are of interest. The case a = B is the special case $ = q~~ 1/
’2, q + 1 of (4.18) .

The coefficients in (5.15) are not usually given as a single term, which they are when

a — B. They are usually a sum of products, rather than just a product. Hylleraas

found one other case when the coefficients are given by a product, the case a = B + 1.

This iollows from (4.18) when n and m are even, B = _ ( q ~ \ and q + -1.

The case — ~~~~ q ~ -1 leads to similar results , but nothing new , so it

will not be considered here.
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6. The continuous ~~Hermite polynomials. The last special case that wil l  be mentioned

is the case B 0. With a different normalization they will be called the continuous

q-Hermite polynomials,

(6.1) H (x~q) = (q.q)~ C (x;0lq)

The recurrence rel~ tion becomes

(6.2) 2xH (xlq) = H ÷1(xki) + (1 — qfl)H
1
(X~g)

The generating function (2.10) becomes

~ H (cos
— 1 _~~~~~~ 

it
• 

i iO 2 — L (q;q)
((re ;q) ) n 0  n

or

(6.4) 1 - 
— 

= H(x~q)r”
-

~~~~~~ 
( .

r r  n 2 2n n 0
I (l—2xrq + r q

n=0

Rogers (35) and later Szego [39) and Carlitz [15], (16) studied these polynomials

extensively . Carlitz used a different variable and normalization , so his results need

a slight translation to correspond to those of Rogers and special cases of formulas

in this paper . He uses a variable and normalization that make it clear that the func-

tions are polynomials in this variable. However the price he has to pay of losing

the nice orthogonality relation is so high that we will use the notation above.

The q-extension of Mehler ’s bilateral sum for Hermite polynomials is

2 n(r ;q) = H (cos O~ q) H (cos ~ q)r
(6.5) = 

n n

n=0 (q;g)~

See (40, Problem 23] for Mehier ’s formula. A beautiful combinatorial proof of Mehler’s

formula has been given by Foata 125) . Formula (6.5) is one of the few results that

have been fou nd for q—H ermite polynomials that has not been extended to q—ultraspherical

polynomials.
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The orthogonality relation (4.3) becomes

1 2w (q;q)
(6.6) 

—l 
H (x~q)H (xlq) FT (l_2 (2x 2 _ l )q~

c
+q 2k) (l_ x 2)

_
~~

2dx = 
(q;q) 

6
m ,n

so (6.5) is the analogue of Mehler ’s formula . For they both have the form

Pn
(x)p

n
(n)

~~
hn 0  n

with

b
2h = 

a 
(P
~
(
~~~ 

w(x)dx

The orthogonality relation (6.6) was given by Allaway [2].

The reader shuuld now read the papers of Rogers (34], (35], and [361 to see how

he used the q-Hermite polynomials to obtain the Rogers-Ramanujan identities and many

• other results.

There are many open problems. The most important is to find spaces on which

these polynomials live , presumably as spherical functions. Then groups acting on

these spaces need to be used to derive addition formulas. It would be interesting to

find a combinatorial interpretation of the q-Hermite polynomials, and then use it to

give a combinatorial proof of (6.5). Slepian [38] has a very important multisum

extension of Mehier ’s formula and Foata and Garsia [26] have found a combinatorial

proof of this formula . A similar formula for the continuous q—Hermite polynomials

should be obtained.

I
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